
Lecture A/2: Grammars

Dr Janka Chlebikova

School of Computing

University of Portsmouth

Oct 3, 2024

Janka Chleb́ıková (SoC, UoP) THEOCS, Part A – Lec. 2 Oct 3, 2024 1 / 29

Introduction to Grammars

Remember: A language over an alphabet Σ is a set of strings from Σ.

We can define a language:

giving a set of strings or combining from the existing languages

using operations such as products, unions, . . . (Lecture 1)

using a grammar (this Lecture)

. . .

A grammar is a set of rules used to define a language – the structure

of the strings in the language.

This lecture: “how to generate a language from a grammar” and

“how to describe a grammar of a language”

Janka Chleb́ıková (SoC, UoP) THEOCS, Part A – Lec. 2 Oct 3, 2024 2 / 29

Two alphabets of grammar

To describe a grammar for a language – two collections of alphabets

(symbols) are necessary.

Terminals are those symbols from which all strings in the

language are made – symbols of a ‘given’ alphabet for a

generated language.

(Usually lower case letters.)

Non-terminal are ‘temporary’ symbols (disjoint from terminals)

used to define the grammar replacement rules (in the production

rules). These must all be replaced by terminals before the

production can successfully make a valid string of the language.

(Usually upper case letters.)

Janka Chleb́ıková (SoC, UoP) THEOCS, Part A – Lec. 2 Oct 3, 2024 3 / 29

Productions

Furthermore, a grammar for a language L (over an alphabet Σ)

consists of a set of grammar rules (productions) of the following form:

α → β,

where α, β are strings of symbols taken from the set of terminals (Σ)

and non-terminals.

A grammar rule α → β can be read in any of several ways:

“replace α by β”,

“α produces β”,

“α rewrites to β” ,

“α reduces to β”.

Janka Chleb́ıková (SoC, UoP) THEOCS, Part A – Lec. 2 Oct 3, 2024 4 / 29

Formal definition of grammar

Example: If Σ = {a, b} and S is a non-terminal symbol then the rules

S → aS , S → Λ are examples of productions for a grammar L.

Now we are ready for the formal definition of a grammar:

1 An alphabet T of symbols called terminals. (Identical to the

alphabet of the resulting language.)

2 An alphabet N of grammar symbols called non-terminals.

(Used in the production rules.)

3 A specific non-terminal called the start symbol. (Usually S .)

4 A finite set of productions of the form α → β, where α and

β are strings over the alphabet N ∪ T .

Janka Chleb́ıková (SoC, UoP) THEOCS, Part A – Lec. 2 Oct 3, 2024 5 / 29

Example 1

Let a grammar G be defined by:

the set of terminals T = {a, b},

the only non-terminal start symbol S ,

the set of production rules:

S → Λ, S → aSb

or in shorthand:

S → Λ | aSb

Which strings belong to the language generated by this grammar? Is

there any difference with the previous grammar?

Given a grammar, which strings belong to the language generated by

the grammar?
Janka Chleb́ıková (SoC, UoP) THEOCS, Part A – Lec. 2 Oct 3, 2024 6 / 29

How to generate a language using grammar

Every grammar has a special non-terminal symbol called a start

symbol, and there must be at least one production with left side

consisting of only the start symbol.

Starting from the production rules with the start symbol, we can

step by step generate all strings belonging to the language

described by a given grammar.

Back to Example 1. The grammar G contains the productions

S → Λ | aSb with the non-terminal start symbol S . This means in

the first step we get Λ and aSb.

Janka Chleb́ıková (SoC, UoP) THEOCS, Part A – Lec. 2 Oct 3, 2024 7 / 29

Derivations

A string made up of terminal (grammar) symbols and non-terminal

symbols is called a sentential form.

Back to Example 1. aSb is a sentential form for the terminals {a, b}

and non-terminal S .

To carry on with generation of strings, we introduce derivation.

Definition (derivation)

If x and y are sentential forms and α → β is a production, then the

replacement of α by β in xαy is called a derivation, and we denote it

by writing

xαy ⇒ xβy .

Janka Chleb́ıková (SoC, UoP) THEOCS, Part A – Lec. 2 Oct 3, 2024 8 / 29

Language generated by grammar

Back to Example 1. The grammar contains the production S → aSb,

so that aaSbb could be derived from aSb, that means aSb ⇒ aaSbb.

As we can use the production rules again and again, we can also get

S ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb . . .

The following three symbols with their associated meanings are used

quite often in discussing derivations:

⇒ derives in one step,

⇒+ derives in one or more steps,

⇒∗ derives in zero or more steps.

Back to Example 1. Which strings can we derive from the start

symbol? S ⇒ Λ, S ⇒ aSb ⇒ ab hence S ⇒∗ ab, S ⇒∗ aaaSbbb,

. . .

Janka Chleb́ıková (SoC, UoP) THEOCS, Part A – Lec. 2 Oct 3, 2024 9 / 29

Formal definition of L(G)

The set of all strings (over terminal symbols) which can be derived

from the start symbol is the language generated by the grammar G .

Back to Example 1. L(G) = {Λ, ab, aabb, aaabbb, . . . }

Definition
If G is a grammar with start symbol S and set of terminals T , then

the language generated by G is the following set:

L(G) = {s | s ∈ T ∗ and S ⇒+ s}.

That is, it’s the set of all strings containing only terminal symbols

which can be derived from the start symbol using one or more steps.

Janka Chleb́ıková (SoC, UoP) THEOCS, Part A – Lec. 2 Oct 3, 2024 10 / 29

Example 2

Let Σ = {a, b, c} be the set of terminal symbols and {A, S} be the set

of non-terminal symbols with the start symbol S . A language L over

Σ is defined by the following productions:

S → b | aA, A → c | bS

Examples of strings which belong to the language L:

Clearly, we can generate b.

All longer strings begin with a. All strings will either end with b

or ac .

We can make the strings: b, ac , abb, abac , ababb, ababac ,

abababb, . . .

Is the following characterisation correct: ‘any string from L

contains a, b (in any order) and ends with either b or ac ’?

. . . NO!, e.g. ba, abaabac /∈ L
Janka Chleb́ıková (SoC, UoP) THEOCS, Part A – Lec. 2 Oct 3, 2024 11 / 29

Example 3

Let Σ = {a, b} be the set of terminal symbols, and {A,B , S} be the

set of non-terminal symbols with the start symbol S . Further, a set

of productions is given for a language L:

S → AB , A → Λ | aA, B → Λ | bB

Is the string aab from the language L?

Yes! For example, we can have

S⇒AB⇒aAB ⇒ aaAB ⇒ aaΛB=aaB ⇒ aabB ⇒ aabΛ=aab,

hence S ⇒+ aab.

This is a leftmost derivation, as we produce the leftmost characters

first.

Janka Chleb́ıková (SoC, UoP) THEOCS, Part A – Lec. 2 Oct 3, 2024 12 / 29

Example 4

Let Σ = {a, b, c} be the set of terminal symbols, S be the only

non-terminal symbol. Which language is described by the following

four productions?

S → Λ

S → aS

S → bS

S → cS

Or in shorthand: S → Λ | aS | bS | cS .

Try to realize that all strings from Σ∗ can be generated by these rules

and verify it for the string aacb.

S ⇒ aS ⇒ aaS ⇒ aacS ⇒ aacbS ⇒ aacbΛ = aacb

Hence, S ⇒∗ aacb.
Janka Chleb́ıková (SoC, UoP) THEOCS, Part A – Lec. 2 Oct 3, 2024 13 / 29

Infinite languages

Notice that there is no bound on the length of strings in an

infinite language.

Therefore there is no bound on the number of derivation steps

used to derive the strings.

If the grammar has n productions, then any derivation consisting

of n + 1 steps must use some production twice.

If the language is infinite, then some production or sequence of

productions must be used repeatedly to construct the

derivations.

Janka Chleb́ıková (SoC, UoP) THEOCS, Part A – Lec. 2 Oct 3, 2024 14 / 29

Example of infinite languages

Example. The infinite language {anb | n ⩾ 0} can be described by the

grammar,

S → b | aS .

To derive the string anb, use the production S → aS repeatedly n

times and then stop the derivation by using the production S → b.

The production S → aS allows us to say

“If S derives w , then it also derives aw .”

Janka Chleb́ıková (SoC, UoP) THEOCS, Part A – Lec. 2 Oct 3, 2024 15 / 29

Recursion/indirect recursion

A production is called recursive if its left side occurs on its right side.

Example. The production S → aS is recursive.

A production A → . . . is indirectly recursive if A derives (in two or

more steps) a sentential form that contains A.

Example. If the grammar contains the rules S → b | aA, A → c | bS ,

then both production S → aA and A → bS are indirectly recursive:

S ⇒ aA ⇒ abS ,

A ⇒ bS ⇒ baA.

Janka Chleb́ıková (SoC, UoP) THEOCS, Part A – Lec. 2 Oct 3, 2024 16 / 29

Recursive grammar

A grammar is recursive if it contains either a recursive production or

an indirectly recursive production.

A grammar for an infinite language must be directly or indirectly

recursive!

Example. S → b | aA | cA, A → c | bB , B → aA | ac

Recursive, infinite or not recursive, finite???

Recursive, infinite! . . . {b, ac , cc , abac , cbac , ababac , . . . }

Example. S → b | aA | bB , A → c | bB | aB , B → a | ba

Recursive, infinite or not recursive, finite???

Not recursive, finite! . . . {b, ba, bba, ac , abba, aaa, aaba}
Janka Chleb́ıková (SoC, UoP) THEOCS, Part A – Lec. 2 Oct 3, 2024 17 / 29

Constructing grammars – finite languages

Now the opposite problem: finding a grammar for a given language.

Sometimes it is difficult or even impossible to write down a grammar

for a given language. And not surprisingly, a language might have

more than one grammar.

A simple case: finite languages

If the number of strings in a language is finite, then a grammar can

consist of all productions of the form S → w for each string w in the

language.

Example. The finite language {a, ba} can be described by the

grammar

S → a | ba

Janka Chleb́ıková (SoC, UoP) THEOCS, Part A – Lec. 2 Oct 3, 2024 18 / 29

Constructing grammars – infinite languages

A not so simple case: infinite languages

There is no universal method for finding a grammar for an infinite

language, so we need to think :-) The method of combining

grammars can be useful!

Example. Find a grammar for the following simple language:

{Λ, a, aa, . . . , an, . . . } = {an : n ∈ N}

A solution:

the set of terminals: T = {a},

the only non-terminal start symbol S ,

the set of production rules:

S → Λ, S → aS

Janka Chleb́ıková (SoC, UoP) THEOCS, Part A – Lec. 2 Oct 3, 2024 19 / 29

Combining grammars

Suppose L and M are languages for which we are able to find the

grammars. Then there exist simple rules for creating grammars which

produce the languages L ∪M , L ·M and L∗.

Idea: We can describe L and M with grammars having disjoint sets of

non-terminals.

Assign the start symbols for the grammars of L and M to be A and

B , respectively:

L : A → . . . , M : B → . . .

and then we combine in appropriate way both grammars to get the

language, more in the following slides.

Janka Chleb́ıková (SoC, UoP) THEOCS, Part A – Lec. 2 Oct 3, 2024 20 / 29

Union rule

The union of the two languages, L ∪M , starts with the two

productions

S → A | B

followed by

the grammar rules of L (with the start symbol A) and

M (with the start symbol B).

Janka Chleb́ıková (SoC, UoP) THEOCS, Part A – Lec. 2 Oct 3, 2024 21 / 29

Union rule/example

Example. Suppose we want to write a grammar for the following

language:

K = {Λ, a, b, aa, bb, aaa, bbb, . . . , an, bn, . . . }.

K is the union of the two languages:

L = {an | n ∈ N} and M = {bn | n ∈ N}.

Thus we can write a grammar for K as follows:

A → Λ | aA (grammar for L),

B → Λ | bB (grammar for M ,)

S → A |B (union rule).

Janka Chleb́ıková (SoC, UoP) THEOCS, Part A – Lec. 2 Oct 3, 2024 22 / 29

Product rule

Similarly, the product of the two languages, L ·M , starts with the

production

S → AB

followed by, as above,

the grammar rules of L (with the start symbol A) and

M (with the start symbol B).

Janka Chleb́ıková (SoC, UoP) THEOCS, Part A – Lec. 2 Oct 3, 2024 23 / 29

Product rule/example

Example. Suppose we want to write a grammar for the following

language:

K = {ambn | m, n ∈ N} = {Λ, a, b, aa, ab, aaa, bb, . . . }

K is the product of the two languages:

L = {an | n ∈ N} and M = {bn | n ∈ N}.

Thus we can write a grammar for K as follows:

A → Λ | aA (grammar for L),

B → Λ | bB (grammar for M ,)

S → AB (product rule).

Janka Chleb́ıková (SoC, UoP) THEOCS, Part A – Lec. 2 Oct 3, 2024 24 / 29

Closure rule

Finally, the grammar for the closure of a language, L∗, starts with the

production

S → AS |Λ

followed by

the grammar rules of L (started from A).

Janka Chleb́ıková (SoC, UoP) THEOCS, Part A – Lec. 2 Oct 3, 2024 25 / 29

Closure rule/example

Example. Suppose we want to construct the language L of all

possible strings made up from zero or more occurrences of aa or bb.

L = {aa, bb}∗ = M∗

where M = {aa, bb}.

Thus,

L = {Λ, aa, bb, aaaa, aabb, bbbb, bbaa, . . . }

So we can write a grammar for L as follows:

S → AS | Λ (closure rule),

A → aa | bb (grammar for {aa, bb}).

Janka Chleb́ıková (SoC, UoP) THEOCS, Part A – Lec. 2 Oct 3, 2024 26 / 29

Equivalent grammar

Grammars are not unique! A given language can have many

grammars which could produce it.

We can simplify the previous grammar:

Replace the occurrence of A in S → AS by the right side of

A → aa to obtain the production S → aaS .

Replace A in S → AS by the right side of A → bb to obtain the

production S → bbS .

This allows us to write the the grammar in simplified form as:

S → aaS | bbS | Λ.

Janka Chleb́ıková (SoC, UoP) THEOCS, Part A – Lec. 2 Oct 3, 2024 27 / 29

Some simple grammars

Language Grammar

{a, ab, abb, abbb} ?

{Λ, a, aa, aaa, . . . } ?

{b, bbb, bbbbb, . . . , b2n+1} ?

{b, abc , aabcc , . . . , anbcn} ?

{ac , abc , abbc , . . . , abnc} ?

Given a simple language, you should be able to come up with

a grammar to produce it!

Janka Chleb́ıková (SoC, UoP) THEOCS, Part A – Lec. 2 Oct 3, 2024 28 / 29

Next lecture

We have discussed:

grammars – sets of production rules for producing the strings of

a language

In the next lecture we will discuss:

a particularly simple subset (family) of languages: the regular

languages

Janka Chleb́ıková (SoC, UoP) THEOCS, Part A – Lec. 2 Oct 3, 2024 29 / 29

