theocs:lecture1

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
theocs:lecture1 [2024/10/03 12:06] tamitheocs:lecture1 [2024/10/07 23:05] (current) tami
Line 1: Line 1:
-====== THEOCS Lecture A/1: Introduction to Theoretical Computer Science ======+====== THEOCS Lecture A/1: Introduction to Theoretical Computer Science and Languages ======
 == 03/10/2024 == == 03/10/2024 ==
  
-**Alan Turing ❤️ 🏳️‍🌈**+{{ :theocs:lecture01_a_slides_1_.pdf | Lecture 1 Slides}} 
 + 
 +  * **Alan Turing ❤️ 🏳️‍🌈** 
 +    * Proven that computational power does not determine the problems it can run. All classical computers regardless of powers can compute the same problems. 
 +  * In late 1950s. N. Chomsky begain the study of formal "grammars" - they have a close relationship to abstract automata. 
 +  * S. Cook seperated problems that **can be solved efficiently** from (CONT) 
 + 
 +---- 
 + 
 +  * Set of symbols - alphabet - which are combined into acceptable strings 
 +    * A finite, nonempty set of symbols is called **an alphabet** 
 +      * $\Sigma = \{a,b,c\}$  is an example of a alphabet 
 +  * Rules which tell us how to combine strings in sensible ways are called the grammar 
 +    * A **sting** is a **finite sequence** of symbols from the alphabet 
 +      * $abc, aaa, bb$ are examples of strings on $\Sigma$ 
 +      * A string with no symbols is called an **empty string** and is denoted $\Lambda$ 
 +  * Using alphabet, strings, grammar makes a language 
 +    * If $\Sigma$ is an alphabet, then a **language over $\Sigma$** is a set of strings (including empty string $\Lambda$) whose symbols come from $\Sigma$. 
 +      * If $\Sigma = \{a,b\}$, then $L = \{ab,aaaab,abbb,a\}$ is an example of a language over $\Sigma$ 
 +      * If $\Sigma$ is an alphabet, then $\Sigma^{\ast}$ denoted the infinite set of all strings made up from $\Sigma$ (including an empty string $\Lambda$ 
 +      * Looking at $\Sigma^{\ast}$, a lanuage over $\Sigma$ is any subset of $\Sigma^{\ast}$ 
 + 
 +  * Four simple examples of languages over an alphabet $\Sigma$ are the sets: 
 +    * $\emptyset, \{\Lambda\}, \Sigma, \Sigma^{\ast}$ 
 +  * If $L = \{aa,bb,ab\} and M = \{ab,aabb\} then$  
 + 
 +  * $L \cdot \{\Lambda\} = \{\Lambda\} \cdot L = L$ 
 +  * $L \cdot \emptyset = \emptyset \cdot L = \emptyset$ 
 +  * $L \cdot M \neq M \cdot L$ 
 +    * **TODO: Insert examples** 
 +  * $L \cdot (M \cdot N) = (L \cdot M ) \cdot N$ 
 +  * $L^0 = \{\Lambda\},\ L^n = L \cdot L^{n-1},\ if\ n > 0$  
 +    * **TODO: Insert examples** 
 +  * If L is a language of $\Sigma$ (i.e. $L \subset \Sigma^\ast$) then the **closure of L** is the language denoted by $L^\ast$  
 +  * **TODO: Positive closure** 
 + 
 +====== Lecture A/2: Grammars ====== 
 + 
 +{{ :theocs:lecture02_a_1_.pdf |Lecture 2 Slides}}
  • theocs/lecture1.1727957185.txt.gz
  • Last modified: 2024/10/03 12:06
  • by tami