mathematics:languagesandgrammar

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
mathematics:languagesandgrammar [2024/10/09 14:44] tamimathematics:languagesandgrammar [2024/10/09 15:12] (current) – [Closure of an alphabet] tami
Line 22: Line 22:
   \end{aligned}   \end{aligned}
 $$ $$
 +
 +==== Closures of a Language ====
 +
 +If L is a language over $\Sigma$ (i.e. $L \subset \Sigma^{\ast}$) then **the closure** of $L$ is denoted $L^{\ast}$, and the **positive closure** of $L$ is denoted $L^+$.
 +
 +$$
 +  \begin{aligned}
 +    L^{\ast} &= L^0 \cup L^1 \cup L^2 \cup ... \\
 +    L^+ &= L^1 \cup L^2 \cup L^3 \cup ...
 +  \end{aligned}
 +$$
 +
 +==== Closure of an alphabet ====
 +
 +The closure of $\Sigma$ coincides with out definition of $\Sigma^{\ast}$ as the set f all string over $\Sigma$. In other words, we have a nice representation of $\Sigma^{\ast}$ as follows:
 +
 +$$
 +  \Sigma^{\ast} = \Sigma^0 \cup \Sigma^1 \cup \Sigma^1 \cup ...
 +$$
 +
 +Where $\Sigma^k$ denotes the set of strings of length $k$, each of whose symmbols in $\Sigma$.
 +===== Grammar =====
 +
 +
 +
  
  
  • mathematics/languagesandgrammar.1728485085.txt.gz
  • Last modified: 2024/10/09 14:44
  • by tami