mathematics:languagesandgrammar

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
mathematics:languagesandgrammar [2024/10/09 14:40] – created tamimathematics:languagesandgrammar [2024/10/09 15:12] (current) – [Closure of an alphabet] tami
Line 8: Line 8:
 $$ $$
   \begin{aligned}   \begin{aligned}
-    L^0 &= \{\Lambda\}\newline+    L^0 &= \{\Lambda\} \\
     L^n &= L \cdot L^{n-1}, \text{if} \ n > 0     L^n &= L \cdot L^{n-1}, \text{if} \ n > 0
   \end{aligned}   \end{aligned}
 $$ $$
 +
 +**Example.** If $L = \{a,bb\}$ then the first few powers of $L$ are...
 +$$
 +  \begin{aligned}
 +    L^0 &= \{\Lambda\} \\
 +    L^1 &= L = \{a,bb\} \\
 +    L^2 &= L \cdot L = \{aa,abb,bba,bbbb\} \\
 +    L^3 &= L \cdot L^2 = \{aaa,aabb,abba,abbbb,bbaa,bbabb,bbbba,bbbbbb\}
 +  \end{aligned}
 +$$
 +
 +==== Closures of a Language ====
 +
 +If L is a language over $\Sigma$ (i.e. $L \subset \Sigma^{\ast}$) then **the closure** of $L$ is denoted $L^{\ast}$, and the **positive closure** of $L$ is denoted $L^+$.
 +
 +$$
 +  \begin{aligned}
 +    L^{\ast} &= L^0 \cup L^1 \cup L^2 \cup ... \\
 +    L^+ &= L^1 \cup L^2 \cup L^3 \cup ...
 +  \end{aligned}
 +$$
 +
 +==== Closure of an alphabet ====
 +
 +The closure of $\Sigma$ coincides with out definition of $\Sigma^{\ast}$ as the set f all string over $\Sigma$. In other words, we have a nice representation of $\Sigma^{\ast}$ as follows:
 +
 +$$
 +  \Sigma^{\ast} = \Sigma^0 \cup \Sigma^1 \cup \Sigma^1 \cup ...
 +$$
 +
 +Where $\Sigma^k$ denotes the set of strings of length $k$, each of whose symmbols in $\Sigma$.
 +===== Grammar =====
 +
 +
  
  
  
  • mathematics/languagesandgrammar.1728484845.txt.gz
  • Last modified: 2024/10/09 14:40
  • by tami